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In genome-wide association studies, only a subset of all genomic variants are typed by current, high-throughput, SNP-genotyping plat-

forms. However, many of the untyped variants can be well predicted from typed variants, with linkage disequilibrium (LD) information

among typed and untyped variants available from an external reference panel such as HapMap. Incorporation of such external informa-

tion can allow one to perform tests of association between untyped variants and phenotype, thereby making more efficient use of the

available genotype data. When related individuals are included in case-control samples, the dependence among their genotypes must be

properly addressed for valid association testing. In the context of testing untyped variants, an additional analytical challenge is that the

dependence, across related individuals, of the partial information on untyped-SNP genotypes must also be assessed and incorporated

into the analysis for valid inference. We address this challenge with ATRIUM, a method for case-control association testing with untyped

SNPs, based on genome screen data in samples in which some individuals are related. ATRIUM uses LD information from an external

reference panel to specify a one-degree-of-freedom test of association with an untyped SNP. It properly accounts for dependence in

the partial information on untyped-SNP genotypes across related individuals. We demonstrate that ATRIUM is robust in that it main-

tains the nominal type I error rate even when the external reference panel is not well matched to the case-control sample. We apply

the method to detect association between type 2 diabetes and variants on chromosome 10 in the Framingham SHARe data.
Introduction

With the rapid advances in high-throughput genotyping

technology, genome-wide association studies have become

a viable approach to elucidating the genetic basis of

human complex disease. It is now affordable to analyze

on the order of 105 to 106 markers throughout the genome.

However, because the set of single-nucleotide polymor-

phisms (SNPs) assayed by the current genotyping plat-

forms covers only a fraction of the total variation in the

human genome, it is likely that many disease-suscepti-

bility alleles are not directly genotyped. Therefore, it is of

great interest to develop powerful statistical methods to

detect association with untyped causal variants. To do

this, one can use the linkage disequilibrium (LD) structure

of the genome, together with data on typed variants,

to detect association between untyped variants and

phenotype.

In the context of unrelated individuals, several

approaches have been developed, including imputation

approaches,1–8 a likelihood-based method,9 testing of tag

SNPs,10 and testing of haplotypes of tag SNPs,11 as well

as TUNA12,13 and related approaches14 that contrast esti-

mated allele frequencies for cases and controls, where the

estimates are based on a linear combination of haplotype

frequencies of tag SNPs. A recent extension of BEAGLE8

allows imputation of genotypes for parent-offspring pairs

and trios as well as for unrelated individuals. This is an

improvement over the approach of applying, to related

individuals, imputation methods that were designed for

unrelated individuals, because it allows one to use addi-
The American
tional phase information from relatives and it avoids the

introduction of Mendelian errors.

A key concern for case-control association testing with

related individuals is that imputed genotypes are depen-

dent among relatives, where the dependence among

imputed genotypes differs from the ordinary dependence

among genotypes and is affected by the type and amount

of information available for each individual. This complex

dependence among imputed genotypes would need to be

taken into account in the analysis in order to construct

a valid test. However, to our knowledge, the current gener-

ation of imputation methods gives information only on

the marginal accuracy (e.g., marginal posterior probabili-

ties and not joint posterior probabilities) of imputed geno-

types, so these methods would not allow valid assessment

of uncertainty in the general setting of case-control associ-

ation testing with related individuals.

A few methods of case-control association testing that

allow arbitrary combinations of related and unrelated

individuals have been developed, including methods to

detect association with a typed marker15–17 and methods

to detect haplotype association.18–20 In this article, we

propose the Association Test with Related Individuals for

Untyped Markers, or ATRIUM. ATRIUM is a one-degree-

of-freedom (1-df) association test based on genotype data

from multiple typed SNPs that are in LD with the untyped

SNP, where information on the joint distribution of typed

and untyped SNPs is obtained from an external reference

panel, and where the sample can include family members as

well as unrelated individuals. ATRIUM properly accounts

for dependence in the partial information on untyped
1Department of Statistics, 2Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
3Present address: Division of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA

*Correspondence: mcpeek@galton.uchicago.edu

DOI 10.1016/j.ajhg.2009.10.006. ª2009 by The American Society of Human Genetics. All rights reserved.
Journal of Human Genetics 85, 667–678, November 13, 2009 667

mailto:mcpeek@galton.uchicago.edu


SNP genotypes across related individuals. Because we condi-

tion the analysis on the external LD information, ATRIUM

still properly controls type I error even when the reference

panel is not well matched to the case-control sample.

Through simulation studies, we also investigate issues

that may affect the power of ATRIUM, including limited

size of the reference panel and mismatch between the refer-

ence panel and the case-control sample. We compare the

power of ATRIUM with that of some existing approaches

for testing in this context. We apply the new method to

test for association of untyped SNPs with type 2 diabetes

(MIM 125853) in the Framingham SHARe data set.

Material and Methods

Suppose a particular untyped genetic variant,U, plays an important

role in the disease or binary trait of interest, and suppose that this

leads to an association between U and case-control status. The

idea behind ATRIUM is that, if we consider an appropriate set of

typed markers, M ¼ ðM1,.,Mt Þ, known to be in strong LD with

U based on external information, then the primary association of

U with case-control status will induce a secondary association of

haplotypes of M with case-control status. Rather than applying

a generic test of association between haplotypes of M and case-

control status, we can improve power to detect association attribut-

able to the untyped variant U by using the information, available

from an external reference such as HapMap, on the joint distribu-

tion of alleles of U and haplotypes of M, to construct a 1-df test

that has power in the direction that corresponds to association of

U with the trait. By ‘‘has power in the direction that corresponds

to association of U with the trait,’’ we mean that we test for the

specific pattern of change in frequencies of haplotypes of M

between cases and controls that would be expected if the haplotype

frequency change were driven by association between the trait and

U. The major methodological challenges in developing ATRIUM are

due to (1) allowing samples that contain related individuals and (2)

the fact that genotypes, not haplotypes, are observed. The haplo-

type information used by ATRIUM for each sampled individual is

based on the individual’s own genotypes as well as genotype infor-

mation on the individual’s parents when available. The uncertainty

in haplotype information and the dependence of haplotype infor-

mation across related individuals are directly taken into account in

the analysis through the use of the IQLS method.20 The result is

a test of association with an untyped SNP, based on genotype

data on associated markers M with missing data allowed, where

the test is applicable in samples that contain related individuals,

assuming that the individuals are outbred and that pedigree infor-

mation is available.

We first briefly outline the method; more detailed development

is given in the following paragraphs. To construct the ATRIUM

test, we start with the MQLS association model,17 which was

developed for testing case-control association with a typed SNP

in samples that contain related individuals. The MQLS model for

the association of the untyped SNP U with the trait implies a model

for association of the haplotypes of M with the trait. This allows us

to form a 1-df, complete-data, quasi-likelihood score test for case-

control association with the untyped SNP in related individuals,

based on haplotype data from M. To extend the test to the more

realistic situation in which genotype, not haplotype, information

is available, we use the IQLS framework,20 which provides a general
668 The American Journal of Human Genetics 85, 667–678, Novemb
approach to quasi-likelihood inference in the presence of both

dependent and missing data. Application of the IQLS framework

allows us to test for case-control association with U by forming

the 1-df, incomplete-data, ATRIUM test based on genotype data

on associated markers M in related individuals.

Mean Model for Untyped SNP
Suppose we have a case-control sample of n outbred individuals,

some of whom may be related with relationships specified by

known pedigrees. We arbitrarily label the two alleles of the untyped

SNP U as ‘‘0’’ and ‘‘1,’’ and we let U be the unobserved vector of

genotypes at U, where we define U ¼ (U1, ., Un)T by Ui ¼
1=23ðthe number of copies of allele 1 at U held by individual iÞ,
1 % i % n. We let A be the observed phenotype vector, where

we define A ¼ (A1, ., An)T by Ai ¼ 1 if individual i is affected,

– K/(1 – K) if i is unaffected, and 0 if i’s phenotype is unknown.

Here 0 < K < 1 is a constant that represents an external estimate

of the population prevalence of the trait. (The prevalence estimate

is permitted to be very rough; the MQLS test is, in fact, valid for

arbitrary fixed K.) The MQLS model specifies that

EðUi jAÞ ¼ pþ gðFAÞi¼ pþ g
Xn

j¼1

2fijAj: (Equation 1)

Here p represents the population frequency of allele 1 at U, which

is treated as an unknown nuisance parameter; fij represents the

kinship coefficient between individuals i and j, which is assumed

known; F is the n 3 n kinship matrix having (i, j)th element

2fij; and g is the unknown parameter of interest representing

the strength and direction of association between the phenotype

and the alleles of U. This model incorporates the enrichment

effect, which specifies, for example, that affected individuals

with affected relatives are more likely to have alleles predisposing

to the trait than are affected individuals without affected relatives.

The MQLS score test based on this model was previously shown17

to have high power to detect case-control association with a typed

SNP, for a variety of multilocus trait models, in samples containing

related individuals.

Mean Model for Haplotypes at Typed Markers in LD

with Untyped SNP
For the untyped SNP U, a set of typed SNPs M is chosen based on

some multilocus measure of association,14,21–23 so that haplotypes

of M are highly informative about alleles of U. Suppose there are

H þ 1 possible haplotypes of M, where for 1 % j % H þ 1; we

assume 0< hj< 1 is the population frequency of the jth haplotype,

with
PHþ1

j¼1 hj ¼ 1. The haplotype frequency vector h ¼ (h1, .,

hH)T is treated as an unknown nuisance parameter in the analysis.

We let Y ¼ (Y11, ., Y1H, ., Yn1, ., YnH)T, where Yij ¼
1=23ðthe number of copies of haplotype j held by individual iÞ,
1 % i % n, 1 % j % H þ 1. If we assume that any association

between haplotypes of M and the trait is a secondary association

that is attributable to the direct effect of U on the trait, then we

can derive a mean model for haplotypes of M based on Equation

1. More precisely, we assume that given the allele at U on a partic-

ular chromosome, the haplotype at M on that chromosome is

conditionally independent of the phenotype information. Then

we find (Appendix A) that

E
�
Yij jA

�
¼ hj þ g

hj

�
p1 j j � p

�
pð1� pÞ ðFAÞi, (Equation 2)
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where p1jj is defined to be the conditional probability that a chro-

mosome has allele 1 at U given that it has the jth haplotype at M.

Thus, the association effect for the jth haplotype is ghj(p1jj – p)/

[p(1 – p)], where g is the association effect for allele 1 of U, and

hj(p1jj – p)/[p(1 – p)] is the slope of the regression line for the simple

linear regression of the haplotype indicator Yj ¼ (Y1j, ., Ynj)
T on

the allele indicator U. If we reparameterize the model in terms of

a new association parameter r ¼ g/[p(1 – p)] and apply the identity

p ¼
PHþ1

k¼1 hkp1jk, then we obtain the equivalent mean model

E
�
Yij jA

�
¼ hj þ rhj

�
p1 j j �

XHþ1

k¼1

hkp1 j k

�
ðFAÞi: (Equation 3)

The genotype data for the case-control sample give direct informa-

tion on h but give no information at all on the p1jj’s. Therefore we

replace each p1jj by an estimate, bpR
1jj, which is obtained from

the reference panel and is taken to be

bpR
1 j j ¼

bhR
j,1bhR
j

, (Equation 4)

provided bhR
j > 0, where bhR

j
denotes an estimate of haplotype

frequency hj in the reference panel, andbhR
j,1

denotes an estimate,

from the reference panel, of the frequency of the haplotype

having allele 1 at U and haplotype j at M. Then we define hj by

hj ¼ hj

�bpR
1 j j �

XHþ1

k¼1

hkbpR
1 j k

�
, (Equation 5)

which can be treated in the analysis as a fixed function of

the unknown haplotype frequency h. (When bhR
j ¼ 0, we setbpR

1jj ¼ ð
PHþ1

k¼1 hkbpR
1jk1bhR

k>0
Þ=ð
PHþ1

l¼1 hl1bhR
l >0
Þ, which, when plugged

into Equation (5), leads to hj ¼ 0.) Combining Equations 5 and

3, we finally obtain

E
�
Yij jA

�
¼ hj þ hj rðFAÞi, (Equation 6)

which is the mean model for haplotypes of M, based on the infor-

mation, from the reference panel, on LD between alleles of U and

haplotypes of M. Alternatively, we could use a logistic version

(Appendix B) of the model in Equation 6, and we would still

obtain the same quasi-likelihood score test as in the next subsec-

tion. We note that the role of the reference panel information is

solely to determine the direction in which to perform a 1-df test,

so the accuracy of the reference panel information will affect

only the power, not the validity, of the score tests we propose in

the next two subsections.

ATRIUM When Haplotypes Are Observed
When the haplotypes at M are observed, ATRIUM is a 1-df, quasi-

likelihood score test based on the mean model in Equation 6.

Our null hypothesis is H0:r ¼ 0, and our alternative hypothesis is

HA:r s 0. The null hypothesis represents no association of haplo-

types of M with the trait, whereas the alternative hypothesis is

formulated to detect the specific kind of association that would

be expected if the haplotype association were driven by the effects

of the untyped SNP U.
To form ATRIUM in the case of observed haplotypes, we require

the null conditional covariance matrix of Y, which can be written as

Var0ðY jAÞ ¼ Var0ðYÞ ¼ F5B, (Equation 7)

where B is the H 3 H matrix having (j, k)th element Bjk ¼
hj(1 – hj)/2 if j ¼ k and – hjhk/2 if j s k. We can also think of B
The America
as being the correlation matrix of the H vector (Yi1, ., YiH) for

any individual i. Similarly, note that F (defined in the previous

subsection) is the correlation matrix of the n vector Yj ¼ (Y1j, .,

Ynj)
T for any haplotype j. The Kronecker product 5 is defined in

Appendix C. ATRIUM for the case when haplotypes are observed

is the quasi-likelihood score test based on the model of Equations

6 and 7, with the resulting ATRIUM test statistic given by

T¼
2
hPn

i¼1 Ai

PHþ1
j¼1 bpR

1 j jðYij �bhjÞ
i2

h
AT

FA�
�
AT1

�2
=
�
1T

F�11
�ihPHþ1

k¼1 bhk

�bpR
1 j k
�2
�
�PHþ1

l¼1 bhlbpR
1 j l
�2
i ,

(Equation 8)

where 1 is a vector with every entry equal to 1, andbhj ¼ ð1T F�11Þ�11T F�1Yj
is the BLUE24 of hj under the null

hypothesis of no association. In the special case when the individ-

uals are unrelated, the term [ATFA – (AT1)2/(1TF�11)] in the

denominator reduces to
Pn

i¼1ðAi � AÞ2, where A ¼ n�1
Pn

i¼1 Ai is

the sample average of A. Under regularity conditions, the ATRIUM

test statistic T is asymptotically c2
1 distributed under the null

hypothesis of no association. This asymptotic null distribution

holds regardless of whether the reference panel provides biased

estimates of the p1jj, as might happen, for instance, when the refer-

ence panel and case-control sample are drawn from different pop-

ulations. Thus, validity of our test does not depend on choice of

reference panel.

While accuracy ofbpR
1jj does not affect validity of the test, it can

affect power. WhenbpR
1jj is exactly equal to the true p1jj, which one

could think of as the case of an infinitely large, perfectly matched

reference panel, there is an optimality result for our test, namely,

that it is asymptotically locally most powerful among tests based

on Y (under regularity conditions and assuming that Equations 3

and 7 hold). Thus, compared to other association tests between

haplotypes of M and the trait, ATRIUM should have increased

power to detect case-control association with the untyped SNP U.

ATRIUM When Unphased Genotypes Are Observed
For the ith sampled individual, 1 % i % n, let Gi denote the

observed, unphased genotype data on the associated markers M,

where missing genotypes are allowed, and let G ¼ (G1, ., Gn).

Note that G provides only partial information about the haplo-

type indicator vector Y. To obtain the ATRIUM test statistic in

this setting, we use the IQLS method,20 which provides a quasi-

likelihood score test that can be used with missing and dependent

data. Instead of being based on Y, which is now only partially

observed, ATRIUM is the quasi-likelihood score test based

on a vector, Z, of conditional expectations of elements of Y,

which incorporates partial haplotype information. We define

Z ¼ (Z11, ., Z1H, ., Zn1, ., ZnH)T with Zij ¼ E(YijjGi, Gmi, Gfi, A),

where Gmi and Gfi denote the observed, unphased genotype data

for the mother and father of individual i, respectively, where these

may be missing. Throughout the analysis, we condition on the

observed pattern of missing genotypes, and we assume that the

pattern of missingness is not informative about the underlying

haplotypes.

We have E(ZjA) ¼ E(YjA), so the mean model of Equation 6 still

applies to Z. As before, we are interested in testing the null

hypothesis of no association between the trait and the untyped

SNP U, H0:r ¼ 0 versus HA:r s 0. Note that explicit computation

of Z under the alternative hypothesis would require additional

assumptions about the genetic model. Fortunately, the IQLS
n Journal of Human Genetics 85, 667–678, November 13, 2009 669



method allows one to perform the quasi-likelihood score test

without having to actually compute Z under the alternative

model. We define U ¼ Var0(ZjA) ¼ Var0(Z) to be the conditional

covariance matrix of Z under the null hypothesis, and we let

Fr ¼ �E0ðvðZ� mÞ=vrjAÞ and Fh ¼ �E0ðvðZ� mÞ=vhjAÞ, where

m ¼ EðZjAÞ with mij given by Equation 6 and where E0($) denotes

expectation under the null hypothesis. Additional details on

how U, Fr, and Fh are obtained can be found in Appendix D.

Then the ATRIUM test statistic has the form

T ¼
( �

FT
r U�1ðZ� mÞ

�2
FT

r U�1Fr � FT
r U�1Fh

�
FT

h U�1Fh

��1
FT

h U�1Fr

)
ðr,hÞ¼ð0,bhÞ,
(Equation 9)

where the entire right-hand side is evaluated at ðr,hÞ ¼ ð0,bhÞ.
Here bh is the IQL estimator of h when r ¼ 0, which is the

solution to the IQLS equation FT
h U�1ðZ� mÞ ¼ 0, when r ¼ 0.

This equation is easily solved numerically by an iterative algo-

rithm. The ATRIUM test statistic asymptotically follows a c2
1

distribution under the null hypothesis of no association, under

regularity conditions.20

Connections with Previous Methods for Unrelated

Individuals
The WHAP method14 has been developed for the special case of

complete haplotype information on the set of markers M in a

sample consisting of equal numbers of unrelated cases and

controls, where no distinction is made between unaffected

controls and unphenotyped (i.e., general population) controls.

The optimal-weight WHAP test statistic is obtained as a special

case of our complete-data ATRIUM test statistic in Equation 8,

under the assumptions that the sampled individuals are unrelated

and that the controls are all of one type, either all unaffected or all

unphenotyped.

The TUNA method12,13 uses a similar idea to test for association

with an untyped SNP in a sample of unrelated cases and controls,

when unphased genotype data are available on the set of markers

M. Where ATRIUM uses a score test, the TUNA software13 uses

a Wald test based on different null and alternative hypotheses

than those of ATRIUM. Nonetheless, in the special case of

complete haplotype data on unrelated individuals, where all

controls are of the same type, the TUNA and ATRIUM test statistics

are identical except for the choice of variance estimator.

Comparison to Other Approaches for Related

Individuals
In the next section, we perform simulation studies to compare the

power of ATRIUM to that of (1) the single-SNP MQLS association

test17 with the SNP among M1,.,Mt that has highest r2 with

the untyped SNP; (2) the full-degree-of-freedom IQLS haplotype

association test20 applied to haplotypes of M; and (3) a 1-df haplo-

type association test for deviation in the direction of the single

haplotype of M that has highest r2 with the untyped SNP, where

test (3) is novel, to our knowledge. We now give a brief overview

of tests (2) and (3).

The full-degree-of-freedom IQLS haplotype association test20 is

similar to ATRIUM in that it is a quasi-likelihood score test based

on the vector Z, but it uses a different mean model given by

E
�
ZijjA

�
¼ E

�
YijjA

�
¼ hj þ gjðFAÞi, (Equation 10)
670 The American Journal of Human Genetics 85, 667–678, Novem
where g ¼ ðg1,.,gHÞT is the parameter of interest, which

measures trait-haplotype association. The full-degree-of-freedom

IQLS test allows one to test H0 : g ¼ 0 versus HA : gs0. Under

regularity conditions, the asymptotic null distribution of the

IQLS test is c2
H.

In addition, we propose a 1-df haplotype association test that, to

our knowledge, is novel. Let a denote the haplotype of M that has

highest r2 with the untyped SNP. We modify the model of Equa-

tion 10 to incorporate the constraint gj ¼ �gahj=ð
PHþ1

k¼1,ksa hkÞ,
for j s a. The resulting model has a one-dimensional parameter

of interest, ga, which represents association between the trait

and haplotype a. The constraint specifies that conditional on

a haplotype being not of type a, its type is independent of the

phenotype information. Then we perform the quasi-likelihood

score test of the null hypothesis H0:ga¼ 0 versus HA:ga s 0, which

is a test of association between the trait and haplotype a. This test

is equivalent to the ATRIUM test with the setting bpR
1ja ¼ 1, andbpR

1jj ¼ 0, for j s a. In other words, we are effectively assuming

that the untyped SNP is in perfect LD with haplotype a.

Results

Simulation Studies

We perform simulation studies to explore the validity and

power of ATRIUM. We consider a scenario in which a

case-control sample is genotyped for the Illumina 300K

SNP set. The European (CEU) HapMap sample is taken to

be a well-matched reference panel for the population

from which the case-control sample is drawn. (Note that

although we use the CEU HapMap sample to choose tag

SNPs, we actually simulate a reference panel for each repli-

cate of our simulation studies, with the simulated reference

panel used for calculation of bpR
1jj.) We refer to any SNP

in HapMap that is not in the Illumina 300K set as an

‘‘untyped’’ SNP. For each untyped SNP on chromosome 1,

we use the TUNA software to find a set of four Illumina

300K tag SNPs that maximizes the MD information

measure23 within a 400 kb window, based on the 60

HapMap CEU parents’ data. (MD can be viewed as a multi-

locus extension of r2. It can be interpreted as the asymp-

totic ratio of sample sizes needed to obtain the same power

when the SNP is typed versus when it is untyped and

a particular set of tag SNPs is used.23) From each set of

four tag SNPs, we then remove SNPs that do not provide

significant information on the untyped SNP, based on

the adjusted MD measure.13 We randomly choose five of

the untyped SNPs on chromosome 1, from among those

with MD R 0.4, to be used in the simulations. Tables 1–5

list the joint distributions, estimated from the CEU

HapMap sample, for each of these five untyped SNPs

with their Illumina 300K tag SNPs. In the simulations,

we assume that the distributions in Tables 1–5 represent

the true joint distributions, of the corresponding SNP

sets, in the population from which the case-control sample

is drawn.

We simulate the case-control data based on a trait model

with two unlinked causal SNPs, both acting dominantly,

with epistasis between them. The minor allele frequencies
ber 13, 2009



(MAFs) of SNP 1 and SNP 2 are denoted by p1 and p2,

respectively. In addition to the two allele frequencies, there

are two penetrance parameters, f1 and f2 (f1 > f2), with

penetrance f1 for individuals who have at least one copy

of the minor allele at SNP 1 and at least one copy of the

minor allele at SNP 2 and penetrance f2 for all other indi-

viduals. We consider five different parameter settings,

which are listed as Models a–e in Table 6. For each model,

we set SNP 2 to be one of the untyped SNPs in Tables 1–5,

and its MAF, p2, is determined accordingly. Table 6 gives

the trait model parameters; the resulting population prev-

alence, K; and the sibling risk ratio, ls ¼ Ks/K, where Ks is

the prevalence conditioned on having an affected sibling.

We sample 90 outbred, three-generation, 16-person pedi-

grees, of which 30 pedigrees have four affected individuals,

30 have five affected individuals, and 30 have six affected

individuals. In each sampled pedigree, phenotypes for all

16 individuals are observed. The individual’s genotypes

are observed if and only if at least 30% of the individual’s

siblings, parents, and offspring are affected. This is similar

to the study design in a previous report.17

An important feature of the ATRIUM analysis is that it is

conditional on the value of bpR
1jj obtained from the refer-

ence panel. This results in a theoretical robustness property

for type I error of the test, namely, ATRIUM will be valid, in

the sense of having the correct type I error, even whenbpR
1jj

is a biased or inaccurate estimate of p1jj. We verify this in

our simulations, and we also use simulations to assess the

impact of the reference panel on power. Specifically, we

Table 1. Haplotype Frequencies, Estimated from the CEU HapMap
Sample, for SNP rs10797373, denoted by U, and Three Tag SNPs on
the Illumina 300K Set

Haplotype M1 M2 M3 U Frequency

H1 0 0 1 1 0.158

H2 0 1 1 1 0.042

H3 1 0 0 1 0.092

H4 1 0 1 0 0.075

H5 1 1 0 1 0.067

H6 1 1 1 0 0.567

Table 2. Haplotype Frequencies, Estimated from the CEU HapMap
Sample, for SNP rs10907174, Denoted by U, and Three Tag SNPs on
the Illumina 300K Set

Haplotype M1 M2 M3 U Frequency

H1 0 0 1 0 0.017

H2 0 1 0 0 0.708

H3 1 0 1 1 0.083

H4 1 1 0 0 0.017

H5 1 1 0 1 0.125

H6 1 1 1 0 0.033

H7 1 1 1 1 0.017
The American
consider the effect on power of (1) bias inbpR
1jj introduced

by a mismatched reference panel and (2) variability inbpR
1jj

because of small sample size of the reference panel. To

assess (1), we compare results from simulations based on

three different types of reference panel: well-matched, in

which the reference panel consists of phased genotype

data on 60 unrelated individuals simulated based on the

CEU HapMap sample; mismatched, in which the reference

panel consists of phased genotype data on 90 unrelated

individuals simulated based on the Asian (JPTþCHB)

HapMap sample; and extremely mismatched, in which

the reference panel consists of phased genotype data on

60 unrelated individuals simulated based on the African

(YRI) HapMap sample. To assess (2), we compare results

from simulations in which the true value of p1jj is plugged

in for bpR
1jj (‘‘perfect panel’’) to those in which bpR

1jj is

estimated from the well-matched reference panel of 60

unrelated individuals described above. In our simulations,

every replicate of the case-control sample has its own simu-

lated reference panel (except ‘‘perfect panel’’ in which true

values are used instead of a reference panel).

For the assessment of type I error, association is tested

with an untyped SNP that is unlinked and unassociated

Table 3. Haplotype Frequencies, Estimated from the CEU HapMap
Sample, for SNP rs2794347, Denoted by U, and Three Tag SNPs on
the Illumina 300K Set

Haplotype M1 M2 M3 U Frequency

H1 0 0 0 0 0.050

H2 0 0 0 1 0.008

H3 0 1 0 0 0.675

H4 0 1 0 1 0.067

H5 0 1 1 0 0.017

H6 0 1 1 1 0.042

H7 1 0 0 0 0.008

H8 1 0 0 1 0.075

H9 1 1 0 0 0.050

H10 1 1 0 1 0.008

Table 4. Haplotype Frequencies, Estimated from the CEU HapMap
Sample, for SNP rs12031614, Denoted by U, and Three Tag SNPs on
the Illumina 300K Set

Haplotype M1 M2 M3 U Frequency

H1 0 0 0 1 0.025

H2 0 0 1 1 0.208

H3 0 1 0 0 0.108

H4 0 1 0 1 0.133

H5 1 0 0 0 0.008

H6 1 0 0 1 0.033

H7 1 0 1 0 0.050

H8 1 1 0 0 0.433
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with any causal variant, where phenotype is simulated

according to Model b. We compare the proportion of simu-

lations in which the statistic exceeds the (1 – a)th quantile

of the c1
2 distribution to the nominal type I error level a,

for a ¼ 0.01 and 0.05. Table 7 gives the empirical type I

error of the ATRIUM test, based on 10,000 replicates,

wherebpR
1jj is obtained from a reference panel that mimics

the HapMap CEU, YRI, or JPTþCHB sample. We find that

even for an extremely mismatched (YRI) reference panel,

type I error is not significantly different from the nominal

level when a ¼ 0.05 or 0.01. These results verify that the

type I error of the ATRIUM test for an untyped SNP is

robust to the choice of reference sample.

To assess power for each model, we mask the genotypes

at causal SNPs 1 and 2 and perform the tests based only on

the tag SNPs for SNP 2, which are given in Tables 1–5 for

Models a–e, respectively. These tag SNPs form the set M

described in Material and Methods. Table 7 illustrates the

power of ATRIUM for the three different types of reference

panel. Under Models a, b, and e, power remains high even

when the mismatched JPTþCHB reference panel is used,

and power is reasonable even for the extremely mis-

matched YRI reference panel. However, in Models c and d,

power is compromised with a mismatched reference panel.

This results from the fact that the joint haplotype distribu-

tion of SNP 2 with its tag SNPs differs dramatically across

Table 5. Haplotype Frequencies, Estimated from the CEU HapMap
Sample, for SNP rs10910097, Denoted by U, and Four Tag SNPs on
the Illumina 300K Set

Haplotype M1 M2 M3 M4 U Frequency

H1 0 0 0 0 0 0.025

H2 0 0 0 0 1 0.050

H3 0 0 0 1 1 0.050

H4 0 0 1 0 0 0.250

H5 0 0 1 1 0 0.075

H6 0 1 0 0 0 0.067

H7 0 1 0 1 0 0.383

H8 1 0 0 0 1 0.083

H9 1 1 0 0 1 0.017

Table 6. Parameter Settings for Simulation Models

Minor Allele
Frequencies

Penetrance
Parameters

Model SNP 2 p1 p2 f1 f2 K ls

a rs10797373 0.15 0.358 0.15 0.05 0.066 1.118

b rs10907174 0.30 0.225 0.22 0.09 0.116 1.075

c rs2794347 0.40 0.200 0.40 0.20 0.246 1.045

d rs12031614 0.50 0.400 0.18 0.07 0.123 1.077

e rs10910097 0.35 0.200 0.25 0.10 0.131 1.081
672 The American Journal of Human Genetics 85, 667–678, Novemb
the three populations (where this distribution for the

CEU sample is given in Tables 3 and 4).

Table 8 compares the power of ATRIUM, with a well-

matched reference panel of 60 unrelated individuals, to

the power of three other tests that are valid in samples

containing related individuals: (1) the single-SNP MQLS

association test with the SNP in M that has the highest

r2 with the untyped SNP; (2) the full-degree-of-freedom

haplotype test applied to the haplotypes of M; and (3)

the 1-df haplotype association test for deviation in the

direction of the single haplotype of M that has the highest

r2 with the untyped SNP. In every setting, the ATRIUM test

outperforms the other three, verifying that in samples con-

taining related individuals, the strategy of using reference

panel information to select an optimal direction for testing

association with an untyped SNP improves power over

other approaches. To assess the possible effects on power

of variability inbpR
1jj as a result of small sample size of the

reference panel, we also compare the power of ATRIUM

with the well-matched reference panel of 60 unrelated

individuals to ATRIUM with the true value of p1jj plugged

in for bpR
1jj (‘‘perfect panel’’). Based on these simulations,

there appears to be little loss of power between the unat-

tainable perfect panel and the well-matched reference

panel.

Analysis of Type 2 Diabetes in the Framingham SHARe

Data

The Framingham Heart Study (FHS)25 is a multicohort,

longitudinal study of risk factors for cardiovascular disease.

The FHS sample consists of unrelated individuals as well

as individuals from multigenerational pedigrees. For indi-

viduals in Cohort 1 (original Framingham cohort), we

use the data from exams 1–27 to determine type 2 diabetes

status, which is coded as follows: individuals with at least

one exam with (nonfasting) blood glucose (BG) level R

200 mg/dl or who were under treatment for diabetes,

where the measurement or treatment occurred between

the ages of 35 and 75 years, are classified as affected. We

classify as unaffected those who satisfy all of the following

conditions: (1) R 70 years at the time of the last exam for

which BG is available, (2) BG < 200 mg/dl for all exams

for which it is available, and (3) not taking any treatment

by the time of the last exam. We classify as unknown

phenotype those who were < 70 years at the time of

the last exam for which BG is available and who satisfy

both conditions (2) and (3). For individuals in Cohort 2

(offspring cohort), we use the data from exams 1–7, and

for individuals in Cohort 3 (generation three cohort), we

use the data from exam 1 to determine type 2 diabetes

status, which is coded as follows for Cohorts 2 and 3: indi-

viduals with at least one exam with fasting plasma glucose

(FPG) R 126 mg/dl or who were under treatment for

diabetes, where the measurement or treatment occurred

between the ages of 35 and 75 years, are classified as

affected. We classify as unaffected those who satisfy all of

the following conditions: (1) R 70 years at the time of the
er 13, 2009



Table 7. Power and Type I Error of ATRIUM, When the Reference Panel Is Well Matched to the Sample or Mismatched, Based on 5,000
Simulated Replicates for Power or 10,000 Simulated Replicates for Type I Error

Empirical Type I Error (SE) Estimated Power (SE) with Significance Level of 0.05

Reference Panel a ¼ 0.05 a ¼ 0.01 Model a Model b Model c Model d Model e

CEU (match) 0.050 (0.002) 0.009 (0.0010) 0.915 (0.004) 0.957 (0.003) 0.868 (0.005) 0.859 (0.005) 0.985 (0.002)

JPTþCHB (mismatch) 0.049 (0.002) 0.011 (0.0010) 0.911 (0.004) 0.944 (0.003) 0.447 (0.007) 0.782 (0.006) 0.932 (0.004)

YRI (extreme mismatch) 0.051 (0.002) 0.010 (0.0010) 0.838 (0.005) 0.750 (0.006) 0.355 (0.007) 0.432 (0.007) 0.930 (0.004)
last exam for which FPG is available, (2) FPG < 126 mg/dl

for all exams for which it is available, and (3) not taking

any treatment by the time of the last exam. We classify

as unknown phenotype those who were < 70 years at the

time of the last exam for which FPG is available and who

satisfy both conditions (2) and (3). Note that for exams

1 and 2 for Cohort 2, instead of the FPG R 126 mg/dl

criterion, we use the hand-curated diabetes mellitus (DM)

status, which is based on detailed chart review and is avail-

able for exams 1 and 2 of Cohort 2 in Framingham SHARe.

This study had approval from dbGaP and from the Univer-

sity of Chicago Institutional Review Board.

Among the FHS individuals who are genotyped on the

Affymetrix 500K array, and who are coded as affected,

unaffected, or unknown phenotype based on the above

criteria, we include only those who satisfy the following

quality-control conditions: (1) completeness> 96%, where

completeness is the proportion of all markers on the

Affymetrix 500K array for which a given individual has

genotypes called, and (2) diagonal of empirical kinship

matrix<1.05. We also use the off-diagonals of the empirical

kinship matrix to exclude an additional 298 individuals

with kinship values that are not consistent with the pedi-

gree information. Based on the above criteria, a total of

7,678 individuals are retained in the analysis, with 576

affected, 1,254 unaffected, and 5,848 unknown phenotype,

of which 793 are original cohort, 3,142 are offspring cohort,

and 3,743 are third generation.

We perform case-control association testing of type 2

diabetes with both typed and untyped SNPs on chromo-

some 10 in the Framingham SHARe data. The typed SNPs

in the analysis consist of the 21,777 SNPs on chromosome

10 that are on the Affymetrix 500K array, pass the Affyme-
The American
trix 500K quality-control tests, and meet the following

additional criteria: (1) call rate R 96%, (2) Mendelian error

rate % 0.02, and (3) MAF R 0.01. The untyped SNPs in

the analysis are the 60,344 SNPs on chromosome 10 in

HapMap that meet the following criteria: (1) are not

among the 21,777 typed SNPs and (2) are tagged by at least

two typed SNPs, where the tagging is done by applying

TUNA to the CEU HapMap samples, in a similar fashion

to what is described in detail in subsection Simulation

Studies (with the Illumina 300K array replaced by the Affy-

metrix 500K array and with chromosome 1 replaced by

chromosome 10). We use MQLS to test for association

with each typed SNP and ATRIUM to test for association

with each untyped SNP. The prevalence of diagnosed and

undiagnosed diabetes among people aged 60 years or older

in the United States is reported to be ~23%, with type 2 dia-

betes accounting for about 90%–95% of all diagnosed cases

of diabetes.26 Therefore, we set K ¼ 0.2 in the MQLS and

ATRIUM analyses.

Table 9 gives the results for SNPs for which the corre-

sponding ATRIUM or MQLS test has a p value < 8.0 3

10�5. The first SNP in Table 9 (rs2904802) is in an intron

of the gene encoding aldo-keto reductase family 1, member

C1 (AKR1C1 [MIM 600449]), located at 10p15.1. The next

four SNPs in Table 9 (rs7901695, rs4506565, rs7903146,

and rs4132670) are intronic SNPs for the gene encoding

transcription factor 7-like 2 (TCF7L2 [MIM 602228]),

located at 10q25.2. Recently, five separate type 2 diabetes

genome-wide association studies27–31 have identified asso-

ciation between TCF7L2 and type 2 diabetes. One study32

has shown that the rs7903146 T allele is associated with

hepatic insulin resistance and diminished glucose-stimu-

lated plasma insulin secretion. The sixth SNP in Table 9
Table 8. Power of ATRIUM Compared to Single-SNP and Haplotype Association Tests, Based on 5,000 Simulated Replicates, a ¼ 0.05, CEU
Reference Panel

Estimated Power (SE)

Test Model a Model b Model c Model d Model e

SNP 0.555 (0.007) 0.946 (0.003) 0.530 (0.007) 0.749 (0.006) 0.793 (0.006)

HAP (full degree of freedom) 0.723 (0.006) 0.856 (0.005) 0.713 (0.006) 0.650 (0.007) 0.899 (0.004)

HAP (1 degree of freedom) 0.849 (0.005) 0.935 (0.003) 0.723 (0.006) 0.832 (0.005) 0.741 (0.006)

ATRIUM 0.915 (0.004) 0.957 (0.003) 0.868 (0.005) 0.859 (0.005) 0.985 (0.002)

ATRIUM (perfect panel)a 0.915 (0.004) 0.960 (0.003) 0.887 (0.005) 0.867 (0.005) 0.987 (0.002)

a ATRIUM (perfect panel) is ATRIUM with true p1jj plugged in for bpR
1jj.
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Table 9. Type 2 Diabetes Association Results in Framingham SHARe, for Typed and Untyped SNPs on Chromosome 10

Region Gene SNP Position (nucleotides) Typed # of Tag SNPs MD Test p Value

10p15.1 AKR1C1 rs2904802 4,999,364 no 4 0.44 ATRIUM 4.8e�5

10q25.2 TCF7L2 rs7901695 114,744,078 yes – – MQLS 4.9e�6

10q25.2 TCF7L2 rs4506565 114,746,031 yes – – MQLS 3.1e�6

10q25.2 TCF7L2 rs7903146 114,748,339 no 3 0.94 ATRIUM 1.9e�5

10q25.2 TCF7L2 rs4132670 114,757,761 yes – – MQLS 2.4e�5

10q26.13 GPR26a rs859510 125,337,377 no 4 1.00 ATRIUM 7.8e�5

10q26.2 DOCK1 rs4615933 128,716,002 no 4 0.65 ATRIUM 3.4e�5

10q26.2 DOCK1 rs6482989 128,753,959 no 3 0.68 ATRIUM 1.6e�5

10q26.2 DOCK1 rs9418739 128,758,976 yes – – MQLS 3.4e�5

a rs859510 is 78.5 kb upstream of the gene GPR26.
(rs859510) is 78.5 kb from the gene encoding G protein-

coupled receptor 26 (GPR26 [MIM 604847]), located at

10q26.13. This SNP lies in a previously identified,33 6.3 Mb

linkage region, for hemoglobin AIc (HbA1c), a diabetes-

related quantitative glucose trait, in the FHS based on the

Affymetrix 100K array. The last three SNPs in Table 9

(rs4615933, rs6482989, and rs9418739) are intronic SNPs

for the gene encoding dedicator of cytokinesis 1 (DOCK1

[MIM 601403]), located at 10q26.2.

Previous studies have found the region 10q25-q26 to be

syntenic to several quantitative trait loci for both weight

and type 2 diabetes in rats.34–36 10q25-q26 also contains

a 6.3 Mb region showing evidence for linkage to HbA1c

in FHS.33 Figure 1 shows our FHS type 2 diabetes associa-

tion results for the 10q25-q26 region, where we plot –log

10(p value) for each of 12,653 untyped HapMap SNPs,

based on ATRIUM, and 4,550 typed Affymetrix 500K
674 The American Journal of Human Genetics 85, 667–678, Novem
SNPs, based on MQLS. Overall, the untyped SNPs are

well represented among those SNPs having small p values,

taking into account the fact that although they represent

about 75% of the tested SNPs, the tests for untyped

SNPs are generally expected to have lower power because

of lower information content. In the previously identified

linkage region (119.5–125.8 Mb), the untyped SNPs pro-

vide stronger evidence of association than do the typed

SNPs.

Assessment of Computation Time

The computational burden of untyped SNP analysis is

much greater in samples containing related individuals

than it is in samples of unrelated individuals. This is

because the dependence, across related individuals, of

the partial information on untyped-SNP genotypes must

be assessed and incorporated into the analysis. We note
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Figure 1. Association Results for Type 2 Diabetes in Framingham SHARe for the Region 10q25-q26
–log10(p value) is plotted against chromosomal location for 4,550 typed SNPs (blue circles) and 12,653 untyped SNPs (red x).
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that this dependence differs from the ordinary dependence

among genotypes and is affected by the type and amount

of information available, on the untyped-SNP genotype,

for each individual. Thus, the computationally costly

part of ATRIUM is the calculation, at each iteration, of

the covariance matrix U.

The Framingham SHARe data we analyze contain some

extremely large pedigrees. For instance, there is one family

with 317 genotyped individuals who are included in our

analysis, and there are four other families that each have

more than 90 genotyped individuals included in our anal-

ysis. Accordingly, we did two different assessments of the

computation time needed to test the 60,344 untyped

SNPs of chromosome 10: (1) computation with extremely

large pedigrees, where we include 7,678 individuals from

1,147 families with the number of genotyped individuals

per family ranging from 1 to 317, with five families having

90 or more genotyped individuals; and (2) computation

with moderate-size pedigrees, where we include 4,926 indi-

viduals from 1,084 families in which there are no more

than 20 genotyped individuals per family. With extremely

large pedigrees, the analysis took 17.5 hr on an Intel

2.6 GHz Mac laptop with 4 GB RAM when the haplotype

information for an individual is based only on that

individual’s genotype (i.e., when Zij is taken to be Zij ¼
E(YijjGi, A)), and it took 45 hr when we included parental

genotype data when considering an individual’s haplotype

information (i.e., when Zij is taken to be Zij ¼ E(YijjGi, Gmi,

Gfi, A)). With moderate-size pedigrees, it took 4.5 hr to do

the analysis when haplotype information for an individual

is based only on that individual’s genotype, and it took

12 hr to do the analysis when we included parental geno-

type data when considering an individual’s haplotype

information. We have not optimized the code, so it is likely

that these times could be greatly improved.

Discussion

We propose the ATRIUM method for testing association

with untyped genetic variants in samples containing

general combinations of related and unrelated individuals.

An important feature of ATRIUM is that it properly

accounts for dependence in the partial information on

untyped-SNP genotypes across related individuals, which

is crucial for construction of a valid test. ATRIUM is poten-

tially useful in a wide range of study designs, including

extremely large pedigrees as well as samples that combine

families and unrelated individuals. ATRIUM uses informa-

tion from an external reference panel, such as HapMap, to

select an optimal direction for testing association with

an untyped SNP, based on genotype data from typed

SNPs. ATRIUM allows both phased and unphased geno-

type data for both the case-control sample and the

reference panel. We demonstrate, both theoretically and

through simulation, that the validity of ATRIUM is robust

to mismatch between the reference panel and the case-

control sample, though power is highest when the refer-
The American
ence panel is reasonably well-matched to the case-control

sample. We also find that small sample size of the reference

panel results in little loss of power. We further demon-

strate, both theoretically and through simulation, that

ATRIUM provides higher power to detect association

with untyped SNPs than do other single-SNP and haplo-

type tests based on typed SNPs.

We apply ATRIUM to the Framingham SHARe data to test

for association between type 2 diabetes and SNPs on chro-

mosome 10 that are in HapMap but are untyped on the

Affymetrix 500K array in the Framingham sample. We

replicate association between type 2 diabetes and intronic

SNPs of the TCF7L2 gene, where we obtain p values for

association in the range of 3.1e�6 to 2.4e�5 for three typed

and one untyped intronic SNP of TCF7L2. We also obtain

p values < 8e�5 for SNPs in or near three other genes on

chromosome 10, including one typed and two untyped

intronic SNPs for the DOCK1 gene. In a previously identi-

fied linkage region for a diabetes-related phenotype,33 the

untyped SNPs, analyzed with ATRIUM, provide stronger

evidence for association than do the typed SNPs.

A key challenge that arises in association analysis with

samples of related individuals is that specification of an

alternative model is vastly more problematic with related

than with unrelated individuals. This is because the back-

ground effects of environmental factors and multiple

loci, other than the particular variant being tested, can

create very different patterns of dependence of phenotype

among related individuals under different modeling

assumptions. This makes it particularly challenging to

develop appropriate likelihood-based or Bayesian analyses

in this context. The use of a score-function or quasi-score-

function approach, as in ATRIUM, avoids this problem. A

close connection between the MQLS and IQLS tests and

the retrospective likelihood score test has previously been

shown.20 A key point is that the retrospective likelihood

score, MQLS, IQLS, and ATRIUM tests can be formed

without specifying the joint distribution of phenotypes

among related individuals under the null or alternative

hypothesis, whereas likelihood-based and Bayesian

approaches would, in principle, require this to be specified.

Ideally, one should be able to improve the power of

ATRIUM by making use of one or more of the available

hidden Markov model (HMM) imputation approaches1–8

for the modeling and computation of the conditional

probabilitiesbpR
1jj that are needed from the reference data-

base. A difficulty is that the calculation of the required

covariance matrix U becomes increasingly onerous as the

number of possible haplotypes of typed SNPs used to

predict the untyped SNP increases. An analogous problem

arises if imputation methods are used directly on the case-

control sample with related individuals, because it would

be necessary to compute and take into account the joint

posterior distribution, across related individuals, of the

untyped SNP genotypes. To our knowledge, current impu-

tation methods do not provide these joint posterior prob-

abilities for related individuals.
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When comparing p values across SNPs, particularly

when there are both typed and untyped SNPs being tested,

it is useful to keep in mind that the p value does not make

any adjustment for the differing power of the tests. This

is particularly relevant when typed and untyped SNP

p values are compared, because power to detect association

with an untyped SNP will be reduced to the extent that the

untyped SNP is not well characterized by haplotypes of

typed SNPs. The extent of information on the untyped

SNP, relative to the information that would be available if

the SNP were typed, can be assessed by the MD measure,23

which can be helpful in interpreting the resulting p values.

When the sample size of the reference panel is small, it

can arise that the case-control sample contains a haplotype

(call it haplotype j), for the typed SNPs, that has an esti-

mated frequency of zero in the reference panel. Thus, the

reference panel lacks information on LD between haplo-

type j and the untyped SNP. As described in subsection,

Mean Model for Haplotypes at Typed Markers in LD with

Untyped SNP, we solve this problem by treating haplotype

j as independent of the untyped SNP. An alternative

approach12 would be to group haplotype j with the closest

haplotype (call it haplotype k), among those having

nonzero estimated frequency in the reference panel, and

then set bpR
1jj ¼bpR

1jk. This approach assumes that the

untyped SNP has the same conditional distribution given

haplotype j as given haplotype k. In most cases, one would

expect little difference between the two approaches, but if

haplotype j were greatly enriched in the case-control

sample, the results of the two approaches might be some-

what different. This problem could be resolved with larger

reference panels.

Appendix A

We derive the mean model of Equation 2 for haplotypes

of M from the mean model of Equation 1 for alleles of U.

Let Xi ¼ (ai, xi) be a random variable representing a

randomly chosen combined haplotype from individual i,

where ai is the allele at U and xi is the haplotype at M.

Then our assumption is that P(xi ¼ jjai ¼ m, A) ¼ pjjm, for

m ¼ 0, 1, j ¼ 1, ., H þ 1, i.e., that given the allele at U,

the haplotype at M is conditionally independent of the

phenotype information. Note that E(UijA) ¼ P(ai ¼ 1jA)

and E(YijjA) ¼ P(xi ¼ jjA). Then we have E(YijjA) ¼ E(Ui

jA)P(xi ¼ jjai ¼ 1, A) þ [1 – E(UijA)]P(xi ¼ jjai ¼ 0, A) ¼
E(UijA)pjj1 þ [1 – E(UijA)]pjj0, and the result follows,

where we use the fact that pjj1p þ pjj0(1 – p) ¼ hj and that

pjj1 – pjj0 ¼ hj(p1jj – p)/[p(1 – p)].

Appendix B

Instead of Equation 6, we could use the logistic model

logit
�
E
�
Yij jA

��
¼ logit

�
hj

�
þ

hj

hj

�
1� hj

� rðFAÞi,

(Equation 11)
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where all quantities have the same definitions as in Equa-

tion 6. The quasi-likelihood score test for H0:r ¼ 0 versus

HA:r s 0 based on Equation 11 is identical to that based

on Equation 6, where this test statistic is given in Equation

(8). Conceptually, the advantage of the logistic model (11)

over the linear model (6) is that in the logistic model,

r can be any real number, whereas in the linear model,

r is constrained in a rather complicated way relative to

h ¼ (h1, ., hH)T to ensure that 0 % E(YijjA) % 1.

Appendix C

Given the n 3 m matrix A with (i, j)th element aij and the

p 3 q matrix B with (i, j)th element bij, their Kronecker

product, denoted by A 5 B, is the np 3 mq matrix with

block structure

A5B ¼

0@ a11B / a1mB
« 1 «

an1B / anmB

1A
np 3 mq:

Appendix D

We assume that the markers in the set M are tightly linked,

and that, under the null hypothesis, both Hardy-Weinberg

equilibrium and Mendelian inheritance hold. Let Z0

denote Z evaluated under the null hypothesis, r ¼ 0.

Then we have Zij
0 ¼ E0(YijjGi, Gmi, Gfi), which can be

explicitly computed, as a function of h and (Gi, Gmi, Gfi),

for an outbred, parent-offspring trio, where we allow

some genotypes to be missing. When we plug inbh for h,

we obtain Z evaluated at ðr,hÞ ¼ ð0,bhÞ, which is needed

for Equation 9. We can obtain U ¼ Var0ðZÞ ¼ Var0ðZ0Þ by

finding the joint conditional distribution of (Gi, Gmi, Gfi,

Gj, Gmj, Gfj) for each pair of sampled individuals (i, j), given

the pattern of missing genotypes, where this distribution is

explicitly computed as a function of h, the pedigree infor-

mation, and the pattern of missingness. To obtain Fh, note

that Fh ¼ �E0ðvðZ� mÞ=vhjAÞ ¼ �E0ðvZ0=vhÞ þ 1n5IH ,

where 1n is an n-vector with all entries equal to 1 and IH

is the H 3 H identity matrix. We can explicitly obtain

vZ0/vh from Z0, and the null expectation is obtained

from the joint conditional distribution of (Gi, Gmi, Gfi),

given the pattern of missing genotypes, for each sampled

individual i. Finally, consider Fr ¼ �E0ðvðZ� mÞ=vrjAÞ ¼
�E0ðvZ=vrjAÞ þ ðFAÞ5h, where h ¼ ðh1,.,hHÞT . Note

that knowledge of Z0 is not sufficient to obtain E0(vZ/

vrjA). At the same time, it is not necessary to fully specify

Z under the alternative model either. Instead, we need

the first-order term of the power series expansion for Z

around r ¼ 0. This first-order term is the same for any

two-allele disease model for the untyped SNP, and we use

it to obtain Fr. Note that this is the same assumption

used by Thornton and McPeek (2007)17 to obtain the

MQLS mean model, so we do not need to impose any addi-

tional assumptions to obtain Fr.
ber 13, 2009
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